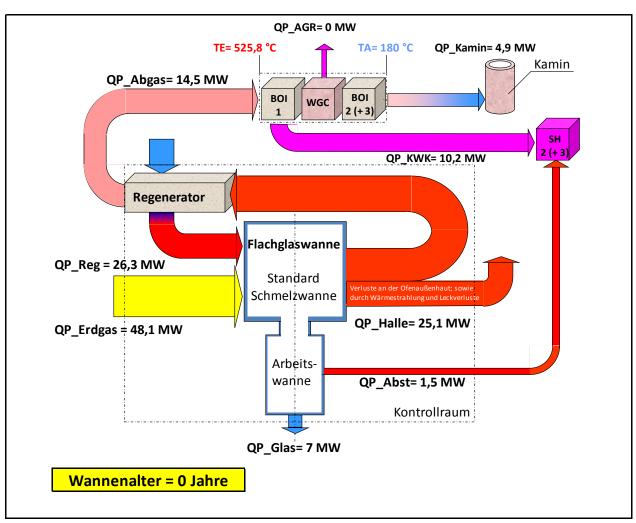


Waste heat recovery systems for the Glass Industry



Why Waste Heat Recovery in the glass industry?

- Since 2008 the operating margin in many glass markets (except Asia) is almost zero
- Focus to the main production cost drivers
- Energy costs roughly are about 25 % of the total glass production costs
- Only 15 20 % of the primary energy input in a glass melter is effective for glass creation
- => More than 80 % of the primary energy input is wasted!

Waste heat potential (sample: 700 tpd glass melter)

Waste Heat Recovery solutions

- Production facility cooling water heat recovery (for central heating system)
- Water or steam based cooling energy and heat energy generation
- Water / Steam based electrical power generation by a turbine/generator unit
 - Standard WHR solution
 - Advanced WHR solutions from qpunkt
- ORC based electrical power generation by a turbine/generator unit

Typical client WHR requirements

- => Top priority for the glass production (quality and quantity)
- => Minimized influence of the WHR system to the furnace pressure characteristics
- => High WHR utilization grade (technological & process related)
- => Maximized electrical power output
- => Independent electrical power supply
- => Short ROI
- => System implementation during operation (not only at cold repair)
- => Additional heat and/or cooling energy utilization

qpunkt WHR concept basics

Optimization potential of standard WHR systems in the Glass Industry:

- Unreliable initial WHR design data
- Over-expected power generation
- Over-expected utilization grade
- Furnace pressure characteristics
- Return of investment
- Electrical energy costs after pay back period
- Combination of electrical and heat/cooling energy production

Objective of our patent registered <u>qpunkt_WHR concept</u> is improvement of this identified weak points, and provision of a unique high performance WHR system to our potential customers.

qpunkt WHR concept basics Initial WHR design data check or how operates qpunkt?

- Provision of an initial data sheet to the client
- Plausibility check of the received data
- Site survey (if required)
- WHR potential analysis
- Local supply part check
- Provision of qpunkt/Oranje Kracht quotation

qpunkt WHR performance – Influence to the glass production process

WHR systems could cause furnace pressure peaks originated by boiler or emergency shutdown modes, and also higher ID-fan electrical power demand.

Glass production influences by qpunkt WHR system:

- Only 50 70 % pressure drop compared with standard WHR solutions
- Significant reduced furnace pressure peaks by implementation of patent registered EQM system, by additionally reduction ID-fan electrical power demand down until 50 %
- Continuous and uninterrupted electrical power supply of the float glass production line even in case of main power failures
- Dedicated chimney and chimney connection design by qpunkt avoids also furnace pressure peaks caused by emergency shut down procedures of the WHR / WGC system
 - **qpunkt** WHR system particular in combination with EQM and a dedicated chimney design <u>improves</u> furnace pressure progress with additional savings and further advantages!

=>

qpunkt WHR performance - Utilization

The WHR utilization depends on:

- a) System reliability
 - o Granted by considering nameable and experienced WHR equipment suppliers.

b) Required cleaning and maintenance works

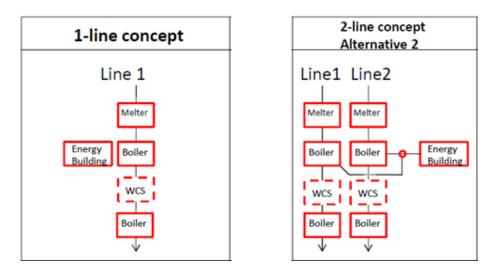
- Due to dust polluted waste gas, the boilers have to be cleaned periodically during operation. Usage of automatically working boiler cleaning systems do not cause any WHR system downtime
- The WHR system requires only one yearly check with 3-4 days downtime (no extra downtime in case of existing waste gas cleaning system!)

c) Process related waste gas conditions

- Waste gas condition variation (temperature and volume) caused by furnace age, product change, melting capacity variation, etc., cause underperformance and also downtime at standard WHR solution
- The qpunkt WHR system always operates with highest performance grade at all waste gas conditions.

=> Utilization grade of the qpunkt - WHR system >= 97 %

qpunkt WHR performance – Return on invest & Electrical output


	ORC WHR	Standard WHR	qpunkt WHR Type 1	qpunkt WHR Type 2
Available waste heat energy [MW _{th}]	9	9	9	9
Electrical net energy generation [MW _{el}]	1,8	1,9	3,1	2,75
WHR utilization [%]	96	92	97	97
Total investment costs [Mio. €]	5	5,6	6,5	6,7
Market electrical energy costs [€/MW]	80	80	80	80
Electrical energy production costs [€/MW]	6,6	6,5	23,2	15,6
Natural gas costs [€/MW]	25	25	25	25
WHR natural gas demand [m³/h]	0	0	240	125
Av. plant electrical energy demand [MW _{el}]	3	3	3	3
Pay back period except any cooling or heating application [years]	4,1	4,6	4,1	4,2
Yearly electrical energy costs after pay back period	991.418	977.402	604.926	598.554

Electrical energy costs without WHR: ca. 2,1 Mio.€ p.a. (Investment costs based on Western European prices)

qpunkt WHR performance – System application and implementation

- Float and container glass plants (100 1.200 tpd)
- Regenerative or oxyfuel melter systems
- Natural gas or oil fueled
- Single line or multi-line implementation:

qpunkt WHR performance – System implementation

- WHR systems generally could be implemented into:
 - \circ New plants

=>

- Existing plants with waste gas cleaning systems
- $\circ~$ Existing plants without waste gas cleaning systems
- $\circ~$ Existing plants with later to implement waste gas cleaning systems
- WHR systems could be implemented at new plant installation, during cold repair and in many cases also during operation.
- Corresponding connections for integration of the boilers should be prepared or have to be prepared under "hot work" conditions.

Implementation of the **qpunkt** - WHR system is possible in most cases, even during operation

qpunkt WHR performance – System implementation

Combined WHR and Waste Gas Cleaning system

Typical WHR system space requirement: For the boiler system: ca. 25 x 30 m For the turbine house: ca. 15 x 20 m

qpunkt WHR performance – Heat and cooling utilization

- Additional to the electrical energy generation the waste heat also could be utilized for:
 - $\circ\,$ Heating of buildings or storage areas
 - Cooling energy
 - Process uses (i.e. cullet drying, sand storage heating, etc.)
- The qpunkt WHR concept provides available heating temperatures up to 60 °C.
 A 700 tpd float glass plant provides ca. 8 MW heat power without any reduction of the electrical power generation.
- By only electrical power reduction of ca. 250 kW, more than 2 MW cooling energy (cold water at 7 °C) could be generated!
- Additional use of heat power could be made adaptable for neighbored greenhouses (extra benefit by selling idle heat energy at 60 °C)
 - The qpunkt WHR system utilizes a huge amount of heat and cooling energy, and is adaptable for each particular customer heat & cooling demand.

Summary

	Requirements	qpunkt - WHR system	Result
Top priority for glass production	Top priority	Top priority	\checkmark
Influence on the furnace pressure	Minimized	Minimized / Improved *1)	\checkmark
Short ROI	< 5 years	2,5 - 5 years	\checkmark
Electrical power output	Maximized	Maximized	\checkmark
WHR utilization time	Maximized	>= 97 %	\checkmark
Heat & Cooling utilization	Customized solutions	Customized solutions	\checkmark
Electrical efficiency grade	Maximized	up to 25 %	\checkmark
Accumulated savings	Maximized	Maximized	\checkmark
System implementation	during operation	during operation	\checkmark

*1) Improved by EQM© (reduces furnace pressure peaks ans reduces ID fan electrical power consumption up to 100 kW)

The advanced **qpunkt** – WHR system complies with all typical requirements, and provides also further saving and process optimization potential (i.e. by the patent registered EQM system).

Waste heat recovery systems for the Glass Industry

Advanced Heat Recovery & Energy Transfer Solutions

Schöttmannshof 10a D – 46539 Dinslaken Germany Phone: +49 (0)2064 465 66 55 Mobil: +49 (0)177 7603 003 Email: info@qpunkt.com

Thank you for your attention.